
Lecture 8, page

Part 3: Cluster Scheduling

1

• Scheduling tasks on to a cluster of servers
– Machines are cheap, no need to rely on idle PCs anymore
– Use a cluster of powerful servers to run tasks
– User requests sent to the cluster (rather than a idle PC)

• Interactive applications
– Web servers use a cluster of servers
– “Job” is a single HTTP request; optimize for response time

• Batch applications
– Job is a long running computation; optimize for throughput

Lecture 8, page

Typical Cluster Scheduler

2

• Dispatcher node assigns queued requests to worker
nodes as per a scheduling policy

incoming
requests

dispatcher
node

worker
nodes

queue

scheduling
policy

cluster

Lecture 8, page

Scheduling in Clustered Web Servers

3

• Distributed scheduling in large web servers
– N nodes, one node acts as load balancer/dispatcher
– other nodes are replica worker nodes (“server pool”)

• Requests arrive into queue at load balancer node
– Dispatcher schedules request onto an worker node

• How to decide which node to choose?
– Scheduling policies: least loaded, round robin

• Weighted round robin when servers are heterogeneous
• Session-level versus request-level load balancing

– Web server maintain session state for client (e.g., shopping cart)
– Perform load balancing at session granularity

• All requests from client session sent to same worker

Lecture 8, page

Scheduling Batch Jobs

4

• Batch jobs are non-interactive tasks
– ML training, data processing tasks, simulations

• Batch scheduling in a server cluster
– Users submit job to a queue, dispatcher schedules jobs

• SLURM: Simple Linux Utility for Resource Management
– Linux batch scheduler; runs on > 50% supercomputers
– Nodes partitioned into groups; each group has job queue

• Specify size, time limits, user groups for each queue
• Example: short queue, long queue
• Many policies: FCFS, priority, gang scheduling
• Exclusive or shared access to nodes (e.g., MPI jobs)

• Others: SunGridEngine, DQS, Load Leveler, IBM LSF

Lecture 8, page

Mesos Scheduler

5

• Mesos: Cluster manager and scheduler for multiple frameworks
– Cluster typically runs multiple frameworks: batch, Spark, …

• Statically partition cluster, each managed by a scheduler
– Mesos: fine-grain server sharing between frameworks

• Two-level approach: allocate resources to frameworks, framework
allocates resources to tasks

• Resource Offers: bundle of resources offered to framework
– Framework can accept or reject offer
– Higher-level policy (e.g., fair share) governs allocation;

resource offers used to offer resources
– Framework-specific scheduling policy allocates to tasks
– Framework can not ask for resources; only accept/reject

resource offers (Paper shows this is sufficient).

Lecture 8, page

Mesos Scheduler

6

• Four components: coordinator, Mesos
worker, framework scheduler, executor on
server nodes

• Step 1: worker node (6 core, 6GB) becomes
idle, reports to coordinator

• Step 2: Coordinator invokes policy, decides
to allocate to Framework 1. Sends resource
offer

• Step 3: Framework accepts, scheduler
assigns task 1 (2C, 2GB) and task 2 (2C,
3GB)

• Step 4: Coordinator sends tasks to executor
on node

• Unused resources (2C, 1GB): new offer

Lecture 8, page

Borg Scheduler

7

• Google’s cluster scheduler: scheduling at very large scales
– run hundreds of thousands of concurrent jobs onto tens of

thousands of server
– Borg’s ideas later influenced kubernates

• Design Goals:
– hide details of resource management and failures from apps
– Operate with high reliability (manages gmail, web search, ..)
– Scale to very large clusters

• Designed to run two classes: interactive and batch
– Long running interactive jobs (prod job) given priority
– Batch jobs (non-prod jobs) given lower priority
– % of interactive and batch jobs will vary over time

Lecture 8, page

Borg Scheduler

8

• Cell: group of machines in a cluster (~10K servers)
• Borg: matches jobs to cells

– jobs specify resource needs
– Borg finds a cell/machine to run a job
– job needs can change (e.g., ask for more)

• Use resource reservations (“alloc”)
– alloc set: reservations across machines
– Schedule job onto alloc set

• Preemption: higher priority job can preempt a lower priority
job if there are insufficient resources

• Borg Master coördinator: replicated 5 times, uses paxos to
• Priority queue to schedule jobs: uses best-fit, worst-fit

Lecture 8, page

Virtualization

9

• Part 1: Basics of virtualization

• Part 2: Hypervisors

• Part 3: Virtualizing Resources

Lecture 8, page CS677: Distributed OS

Part 1: Virtualization

10

• Virtualization: extend or replace an existing interface to
mimic the behavior of another system.
– Introduced in 1970s: run legacy software on newer mainframe

hardware
• Handle platform diversity by running apps in VMs

– Portability and flexibility

Lecture 8, page CS677: Distributed OS

Types of Interfaces

11

• Different types of interfaces
– Assembly instructions
– System calls
– APIs

• Depending on what is replaced /mimiced, we obtain
different forms of virtualization

Lecture 8, page CS677: Distributed OS

Types of Virtualization

12

• Emulation
– VM emulates/simulates complete hardware
– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU
• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified
guest OS to be run in isolation

• Same hardware CPU
– IBM VM family, VMWare Workstation, Parallels, VirtualBox

Lecture 8, page CS677: Distributed OS

Types of virtualization

13

• Para-virtualization
– VM does not simulate hardware
– Use special API that a modified guest OS must use
– Hypercalls trapped by the Hypervisor and serviced
– Xen, VMWare ESX Server

• OS-level virtualization
– OS allows multiple secure virtual servers to be run
– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS
– Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker

• Application level virtualization
– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts
– JVM, Rosetta on Mac (also emulation), WINE

Lecture 8, page CS677: Distributed OS

Part 2: Hypervisors

14

• Type 1: hypervisor runs on “bare metal”
• Type 2: hypervisor runs on a host OS

– Guest OS runs inside hypervisor
• Both VM types act like real hardware

Lecture 8, page CS677: Distributed OS

How Virtualization works?

15

• CPU supports kernel and user mode (ring0, ring3)
– Set of instructions that can only be executed in kernel mode

• I/O, change MMU settings etc -- sensitive instructions
– Privileged instructions: cause a trap when executed in kernel mode

• Result: type 1 virtualization feasible if sensitive instruction subset
of privileged instructions

• Intel 386: ignores sensitive instructions in user mode
– Can not support type 1 virtualization

• Recent Intel/AMD CPUs have hardware support
– Intel VT, AMD SVM

• Create containers where a VM and guest can run
• Hypervisor uses hardware bitmap to specify which inst should trap
• Sensitive inst in guest traps to hypervisor

Lecture 8, page CS677: Distributed OS

Type 1 hypervisor

16

• Unmodified OS is running in user mode (or ring 1)
– But it thinks it is running in kernel mode (virtual kernel mode)
– privileged instructions trap; sensitive inst-> use VT to trap
– Hypervisor is the “real kernel”

• Upon trap, executes privileged operations
• Or emulates what the hardware would do

Lecture 8, page

Type 1 Hypervisors Examples

17

• VMWare ESX Server
– Specialized OS kernel designed to

run virtual machines on bare metal

• Hyper-V Windows hypervisor
• parent partition runs

windows server
• child partitions run VMs

https://en.wikipedia.org/wiki/Hyper-V

Lecture 8, page

Type 1 Hypervisors Examples

18

• Linux KVM (“kernel virtual machine”)
– Kernel infrastructure (driver) for range of VMMs
– One example: QEMU (vmm) + libvirt on top of lvm

– another example: crosvm for Chrome OS to run linux apps.

https://www.redhat.com/en/blog/all-you-need-know-about-kvm-userspace

https://chromium.googlesource.com/chromiumos/docs/+/master/containers_and_vms.md#Crostini

Lecture 8, page CS677: Distributed OS

Type 2 Hypervisor

19

• VMWare example
– Upon loading program: scans code for basic blocks
– If sensitive instructions, replace by Vmware procedure

• Binary translation
– Cache modified basic block in VMWare cache

• Execute; load next basic block etc.
• Type 2 hypervisors work without VT support

– Sensitive instructions replaced by procedures that emulate
them.

• Examples: VirtualBox, Vmware workstation/fusion, Parallels
Desktop

Lecture 8, page CS677: Distributed OS

Paravirtualization

20

• Both type 1 and 2 hypervisors work on unmodified OS
• Paravirtualization: modify OS kernel to replace all

sensitive instructions with hypercalls
– OS behaves like a user program making system calls
– Hypervisor executes the privileged operation invoked by

hypercall.

Lecture 8, page

Xen Hypervisor

21

• Linux Type 1 hypervisor with no special hardware support
– Requires modified kernel, but can run unmodified apps
– Dom-0 runs control plane; each guestOS runs in its own domain/VM

See Paper:
Xen and art

of virtualization

Lecture 8, page CS677: Distributed OS

Part 3: Virtualizing Other Resources
Memory virtualization

22

• OS manages page tables
– Create new pagetable is sensitive -> traps to hypervisor

• hypervisor manages multiple OS
– Need a second shadow page table
– OS: VM virtual pages to VM’s physical pages
– Hypervisor maps to actual page in shadow page table
– Two level mapping
– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault
• Paravirtualized - use hypercalls to inform

Lecture 8, page

I/O Virtualization

23

• Each guest OS thinks it “owns” the disk
• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to
the guest OS

• Hypervisor converts block # to file offset for I/O
– DMA need physical addresses

• Hypervisor needs to translate

• Stored as virtual disk or vmdk files

CS677: Distributed OS

Lecture 8, page

Virtual Appliances & Multi-Core

24

• Virtual appliance: pre-configured VM with OS/ apps
pre-installed
– Just download and run (no need to install/configure)
– Software distribution using appliances

• Multi-core CPUs
– Run multiple VMs on multi-core systems
– Each VM assigned one or more vCPU
– Mapping from vCPUs to physical CPUs

• Today: Virtual appliances have evolved into docker containers

CS677: Distributed OS

Lecture 8, page

Use of Virtualization Today

25

• Data centers:
– server consolidation: pack multiple virtual servers onto a

smaller number of physical server
• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers
– cloud provider controls physical machines and mapping of

virtual servers to physical hosts
– User gets root access on virtual server

• Desktop computing:
– Multi-platform software development
– Testing machines
– Run apps from another platform

